数字电视系统中的关键RF测量

2013-08-06 来源:微波射频网 字号:
传输系统的调制方式

在卫星、有线和地面数字电视传输系统中,信号的调制方式通常为正交调制,用已调制信号波形的相位和幅度来代表数据符号。在数字电视传输系统中,最常用的调制方式是正交幅度调制(QAM)。

例如,在广泛使用的地面数字调制方式中,COFDM 采用的是16-QAM 或64-QAM 调制方式,8VSB 使用的是8 列系统。在卫星数字系统中,所采用的数字调制方式是四相或正交相移键控(QPSK),它等效于4-QAM。QPSK 是一种非常可靠的调制方式,它已经使用很多年了。QPSK 也常用于分配馈送系统中,它可以有效地利用可用带宽,但需要较高的载噪比。

有线传输系统也是以QAM为基础,有着更多的调制方式,现在仍在开发之中。在有线系统中,增加了调制状态数(16-QAM、64-QAM、256-QAM 和1024-QAM),改善了频谱利用率。这样,在给定的带宽内,可以容纳更多的电视频道。

在美国的数字传输系统中,采用64-QAM 每秒可以传送27Mb的数据,这相当于在6MHz的带宽内可以传送6至10个SD 电视频道或1 个HD 电视频道。而256-QAM 的数据率为38.8Mbps,它等效于在6MHz 带宽内传送11 至20 个SD电视频道或两个HD电视频道。采用新的压缩技术,通过256-QAM调制方式可进一步增加到三个HD频道。在欧洲的数字传输系统中,使用256-QAM调制方式,8MHz 带宽内的数据率可达56 Mbps。

在ITU.J83 规范中,规定了三种区域性的QAM 有线标准,它们是:
·附录A -欧洲
·附录B -北美
·附录C -亚洲

在MTM400 中,备有RF 接口选项,可以测量上述的全部QAM调制标准,还可测量卫星数字传输应用中的QPSK调制方式。

图5. 数字传输系统中的调制方式

星座显示

数字调制系统的星座显示图形相当于矢量仪中的矢量显示,可用来表示QAM信号中的同相(I)分量和正交分量(Q)。符号是给定调制系统中传输信息的最小部分,一个符号在星座图中可描绘为一单个点。这些符号比特是通过复杂的代码转换过程由原始的MPEG-2传输流中导出的。这一转换过程包括了里德-索罗门编码、交织、随机化处理,北美地区的QAM和格形编码或QPSK系统中的卷积(维特比)编码。人们希望能对系统的传输提供防护并能纠正比特错误,抵御脉冲噪声,将传输能量平均地分布于整个频谱。解码器端所采取的处理方式与上述过程相反,应能恢复基本上无差错的比特流。由于采取了误码校正,仅对传输流进行检查并不能提供传输通道或调制器和处理放大器包含有错误的任何指示,使得系统靠近“数字崩溃点”。

一旦MPEG 码流中的传送错误标志(TEF) 作出报告,这时再采取校正措施常常是太迟了。

星座图

可以把星座图认为是一种数字信号“2 维眼图”的阵列,在星座图中标出了符号的着陆点,并给出了着陆的允许范围和判决边界。符号着陆点愈是靠近而聚集在接收符号的“云层”中,那么信号质量就愈佳。由于星座图映射为屏幕上信号的幅度和相位,因此可以利用该阵列的形状来判断和确定传输系统或传输通道中故障和失真的严重程度,有助于阻止传输质量的下降。

图6. 星座图显示

利用上述星座图,可以判断下述调制问题:
·幅度不平衡
·正交错误
·相干干扰
·相位噪声,幅度噪声
·相位错误
·调制误差比

星座图的遥控显示

在MTM400 中,采用了特有的网络浏览器(Web-browser)技术,可通过因特网或专用网络在各个不同地点甚至不同国家观察到无人监测点处的星座图显示。可以调整用户界面的余辉特性,使得先前接收的载波显示点逐渐减弱,就象传统的显示仪器一样。

说明:以下的MTM400 屏幕快照是按照仪器的测试设置显示的,这样在所有情况下的MER 和EVM 都是相似的。仅星座图形不同。

正交误差

传输系统中的正交误差使得符号着陆点靠近边界容限,因而降低了噪声余量。当I信号和Q信号彼此间的相位差不是准确的90 度时就会出现这种情形。正交误差使星座图失去了“方形”结构而呈现为平行四边形或呈菱形。

图7. 星座图中同相轴和正交轴间的正交误差使得图形不是方形而呈菱形

图8. MTM400 中的屏幕俘获显示,说明IQ 间有5 度的正交相位差。

图9. 信号的同相分量和正交分量间的增益差使得星座图不为方形而为矩形。

图10. MTM400 显示出IQ 间的幅度不平衡为10%。

主题阅读:RF测量  泰克