认知无线电中频谱感知技术的研究进展

2013-11-12 来源:中兴通讯技术 字号:

无线通信发展所面临的瓶颈之一就是频谱资源的不足,造成这一问题的主要原因是:一方面,当前普遍采用的静态频谱管理体制留给新系统、新业务的可用资源非常少;另一方面,据美国联邦通信委员会(FCC)研究表明,频谱的使用情况是动态变化的,大部分时段和空间的频谱利用率非常低。构建以认知无线电技术为核心的动态频谱管理体制,可以从根本上缓解频谱资源紧张的局面。认知无线电(CR)概念由Joseph Mitola博士提出,其主导思想是实现伺机的动态频谱接入,即非授权用户(也称次用户或认知用户)通过检测,机会性地接入已分配给授权用户(或主用户)但暂时很少使用甚至未被使用的空闲频段,一旦主用户重新接入该频段,次用户迅速腾出信道。这种技术需解决的首要问题就是如何快速准确地获取授权频谱的使用情况,目前主要有3类解决方案:建立数据库档案、传送信标信号和频谱感知。表1从多个方面对3种方案进行了比较,其中频谱感知方案因具有建设成本低、与现有主系统的兼容性强等突出优点,得到了大多数研究学者的认同;另外两种由于受到政治、经济等因素的制约而很难实现,对其研究相对较少。



频谱感知技术是指认知用户通过各种信号检测和处理手段来获取无线网络中的频谱使用信息。从无线网络的功能分层角度看,频谱感知技术主要涉及物理层和链路层,其中物理层主要关注各种具体的本地检测算法,而链路层主要关注用户间的协作以及对感知机制的控制与优化。因此,目前频谱感知技术的研究大多数集中在本地感知、协作感知和感知机制优化3个方面。文章正是从这3个方面对频谱感知技术的最新研究进展情况进行了总结归纳,分析了主要难点,并在此基础上讨论了下一步的研究方向。
 
1 本地感知技术
1.1 主要检测算法

本地频谱感知是指单个认知用户独立执行某种检测算法来感知频谱使用情况,其检测性能通常由虚警概率以及漏检概率进行衡量。比较典型的感知算法包括:

能量检测算法,其主要原理是在特定频段上,测量某段观测时间内接收信号的总能量,然后与某一设定门限比较来判决主信号是否存在。由于该算法复杂度较低,实施简单,同时不需要任何先验信息,因此被认为是CR系统中最通用的感知算法。

匹配滤波器检测算法,是在确知主用户信号先验信息(如调制类型,脉冲整形,帧格式)情况下的最佳检测算法。该算法的优势在于能使检测信噪比最大化,在相同性能限定下较能量检测所需的采样点个数少,因此处理时间更短。

循环平稳特征检测算法,其原理是通过分析循环自相关函数或者二维频谱相关函数的方法得到信号频谱相关统计特性,利用其呈现的周期性来区分主信号与噪声。该算法在很低的信噪比下仍具有很好的检测性能,而且针对各种信号类型独特的统计特征进行循环谱分析,可以克服恶意干扰信号,大大提高检测的性能和效率。

协方差矩阵检测算法,利用主信号的相关性建立信号样本协方差矩阵,并以计算矩阵最大、最小特征值比率的方法做出判决。文献[1]提出基于过采样接收信号或多路接收天线的盲感知算法。通过对接收信号矩阵的线性预测和奇异值分解(QR)得到信号统计值的比率来判定是否有主用户信号。

以上这些算法都是对主用户发射端信号的直接检测,基本都是从经典的信号检测理论中移植过来的。此外,近期一些文献从主用户接收端的角度提出了本振泄露功率检测和基于干扰温度的检测。有些文献对经典算法进行了改进,如文献[2]提出了一种基于能量检测-循环特征检测结合的两级感知算法。文献[3]研究了基于频偏补偿的匹配滤波器检测、联合前向和参数匹配的能量检测、多分辨率频谱检测和基于小波变换频谱检测等。表2归纳了文献中提及较多的一些感知算法,并对其优缺点进行了比较。

1.2 有待解决的问题

单用户本地感知主要面临以下挑战:首先,对感知设备提出了较高的硬件要求,如高速高分辨率的数模转换器、高速的信号处理器、宽带射频(RF)单元、单/双链路结构等等,以达到所需的检测速度和灵敏度;其次,由于多径衰落、阴影和本地干扰等因素的影响,单用户本地频谱检测往往不能获得满意的性能。再次,如何检测基于扩频技术的主用户信号也是个难点问题。

Ghasemi将频谱感知的主要难点问题归结于3种不确定性:信道不确定性,即在阴影、衰落信道中,认知用户很难从噪声背景下区分出经历深衰落的主信号;噪声不确定性,主要是能量检测的性能会因为噪声估计的偏差受到严重影响;聚合干扰不确定性,当网络中存在多个认知用户时,单个认知用户的发射可能不会干扰主用户,但是多个用户同时发射可能会超过主用户的干扰温度门限(最大干扰的容忍程度)。

基于以上分析,下一步的主要研究方向包括:针对衰落、阴影等恶劣的信道环境,研究能量检测、循环特征检测等算法的改进或者进一步探讨更为新颖的感知算法;针对正交频分复用技术(OFDM)频谱池系统的多带检测算法;将传统的时域、频域、空域的三维信号检测进行拓展,并研究包括角度、编码等维度的多维频谱感知算法。

作者:郭云玮  刘全  高俊