在讨论为什么级联噪声系数计算会发生错误时,我们应回顾一下术语的基本定义。
解释两端口网络的噪声因子的通常定义是:
,
如果用dB表示,则称为噪声系数:
NF=10log10(F).
该表达式取决于输入信号的SNR。然而,如果不定义SNR,这种测量电路或元件的性能指标是毫无意义的,因为它很大程度上依赖于输入信号的质量。因此,合理的方式是对输入的SNR采用最佳假设,也就是说,唯一的噪声源是输入端点在某个确定温度下的热噪声。假设噪声因子不依赖于使用的信号电平也是合乎逻辑的。这就假设被表征的两端口网络工作于线性范围。我们设输入信号功率为PIN,信号增益为Gs,那么输出功率则为POUT=GsPIN,以及:
此外,噪声功率NIN和NOUT的定义不明确,除非我们指定测量时使用的带宽。设NIN和NOUT表示任意指定输入频率下的单位带宽噪声功率,则可解决这一问题。
单边带噪声因子
以上讨论有助于理解IEEE®定义噪声因子:
(两端口变送器的)噪声因子。标准噪声温度(290 K)时,在规定输入频率下,1)输出端口上对应输出频率下单位带宽总噪声功率与2)其中由输入端点在输入频率下产生的部分之比。
对于外差式系统,原理上讲,将有多个输出频率对应单个输入频率,反之亦然;对于每一对相对应的频率,定义一个噪声因子。
“输出端口可用的”应改为“系统传输至输出端点的”。
只有定义了输入端点的导纳(或阻抗)时,用噪声因子表征系统才有意义2。
相对于对应RF频率的定义,噪声因子的这一定义是输出频率的点函数(不是同时一对频率,使其成为单边带噪声因子,见图3)。
图3. SSB噪声系数。
有一点值得注意,分母仅包括来自于一个边带的噪声,分子包括相应输出频率下的单位带宽总体噪声功率,无任何特殊例外。对于具有信号和镜像响应的混频器,为了以数学形式清晰表示,以上定义可记作:
式中,Gi为镜像频率下的转换增益;Gs为信号频率下的转换增益;T0为标准噪声温度;NA为混频器电子器件增加的单位带宽噪声功率,在输出端点测得。镜像频率下的相应噪声因子可记作:
如果镜像频率下的转换增益不同于预期信号频率下的转换增益,该式的结果也与以上不同。有人将以上的IEEE定义理解为“输出端口上对应输出频率下单位带宽总噪声功率”不包括镜像噪声,因此假设:
该定义相当于混频器输入端口中完全不包括镜像频率下的源输入噪声。这一解释未得到业内人士的广泛采用。但为了完整起见,将其示于图4。
图4. SSB噪声系数的“IEEE”变体。
美国联邦标准1037C的噪声因子定义如下:
噪声系数:标准噪声温度(通常为290 K)时,装置的输出噪声功率与其中由输入端点中热噪声引起的部分之比。注:如果装置本身不产生噪声,噪声系数则为实际输出噪声与残余噪声之比。在外差式系统中,输出噪声功率包括镜像频率变换引起的杂散噪声,但是标准噪声温度下输入端点中热噪声的部分仅包括通过系统的主频率变换出现在输出中的噪声,不包括通过镜像频率变换出现的噪声。噪声因子的同义词4。
由于这一较新的定义明确将来自于镜像频率变换引起的杂散噪声包括在输出噪声功率中,所以SSB噪声系数可记作之前建议的形式:
我们考虑Gs=Gi的情况。则:
如果我们进一步考虑混频器本身不增加噪声的情况,即NA=0,则得到F=2或NF=3.01 dB 。这相当于说无噪声混频器的SSB噪声系数为3dB。