分析显示,在研发功率MOSFET技术的过程中,以往常见以QG和QGD(即RDS(on)×QG和RDS(on)×QGD)为基础的因子(FOM)已无法满足需求,若坚持采用固定因子,将可能导致技术选择无法达成优化。通过此次分析的启示,工程师们已定义一套FOM以应用于新的低压功率MOSFET技术研发。由此产生的30伏特(V)技术以超级接面(Superjunction)为基础概念,是DC-DC转换器的理想选择;相较于横向和分裂闸极沟槽MOSFET等竞争技术,该技术可同时提供特定的低RDS(on)、QG、QGD、QOSS和高度闸极回跳抑制。
MOSFET损耗问题加剧 催生新功耗分析技术
多相同步降压转换器是微控制器(MCU)以及其他运算密集型集成电路(IC),如数字信号处理器(DSP)和绘图处理器(GPU)供电的拓扑结构选择。在同步降压转换器内,两个功率MOSFET串联形成半桥结构。高处的MOSFET做为控制单结型FET;低处的MOSFET则为同步FET。
此电路拓扑演变的关键点在于2000年时,引进Pentium 4微处理器以及相关的ATX12V电源规范,其中的功率轨(即转换电压)从5伏特提高至12伏特,以达成微处理器需要快速增加电流的要求。因此而产生的工作周期变化使得功率MOSFET在性能优化方面发生重大变革,并全面采用QGD×RDS(on)和QG×RDS(on)等效益指数作为功率MOSFET的性能指针。然而,过去10年以来,特定尺寸产品中此类FOM和RDS(on)已降低约十倍,QG和QGD已不再是影响功率MOSFET功耗的主要因素。
就控制FET而言,MOSFET封装和印刷电路板(PCB)联机的寄生电感所产生的功耗可能超过由QGD产生的损耗。降低寄生电感的需求推动Power SO8封装的普及化,并使整合动力的概念于2002年产生,即将控制和同步FET与MOSFET驱动器整合于四方形平面无接脚封装(QFN)中,此概念于2004年获英特尔(Intel)DrMOS规范采用。
为解决功率MOSFET多面性的损耗问题,一系列日趋复杂的运算方式和效益指数逐被提出。在功耗机制研究领域中,最被看好的技术是利用如TSuprem4和Medici等TCAD工具制作详细的行为模型,并结合详细的电路仿真(如PSpice),进而产生详细的功耗分析结果。虽然此方法可针对不同的功耗机制进行深入分析,但分析结果需转换成一套以MOSFET参数为基础的FOM,以用于新技术的研发。
确认效益因子有助技术优化
前三项性能指针已广泛用于评估技术的适用性,因此无需多作介绍,其仅用于告知设计工程师需尽可能减少单位面积上的RDS(on)值(即Sp.RDS(on)),以确保芯片在有限的封装尺寸内达成最高的功效。且对于特定的RDS(on),要尽量降低MOSFET电容CGS和CGD,以达成最低开关损耗。
设计一款高性能MOSFET需在特定的参数之间做出权衡。例如,欲改善RDS(on)×QGD,可通过加大单元间距、牺牲Sp.RDS(on)而完成,还可通过增加一个连接源极的闸极屏蔽、牺牲RDS(on)×QOSS而完成。为避免产生不符理想的组件结构,需综合这些FOM。此概念已被应用于生产综合加权同步FET(FET CWS)FOM,即综合考虑闸极电荷和输出电容功耗的效应。此种FOM组合有助于对组件性能做出更精确的评估,此外,通过将转换电压和闸极驱动电压(VIN和VDR)合并后,QG和QOSS的相对重要性取决于应用方式,进而确保改善后的闸极电荷不会对输出电容产生不利影响,反之亦然。
随着小尺寸封装芯片(如QFN3333)和多芯片产品(如DrMOS)的使用越来越为广泛,将低Sp.RDS(on)与低开关FOM相结合的确有其必要性。面积限制同步(Area Constrained sync, ACS)FET FOM组合即是通过降低RDS(on)以提高开关性能,因此需要比封装允许值更大的活动区域。请注意,该FOM不仅是一项单纯的性能指针,而且关系到该技术是否有能力达成各项性能指针在特定空间限制下所认定的潜能。因此,在进行技术比较时,需留意此点。
在理想状态下,对于CWS和ACS FOM而言,QG应在VDS=0和VGS=4.5伏特的条件下进行测量。若无法达成上述条件,可根据闸极电荷曲线,利用公式1计算QG。公式中的QG1、QG2分别为VDS1和VDS2条件下测得的闸极电荷,此两点均取自于闸极电荷曲线中QGD的部分之后。
QG=4.5V×(QG1-QG2)/(VDS1-VDS2)‥‥‥‥(公式1)
QOSS=5.45×COSS(Vm)×(Vm+0.7)1/2‥‥(公式2)
最终的目标是确保MOSFET不会因为电容性电流流过闸漏电容(CGD)而导致寄生性导通,当快速VDS瞬变电流产生时,CGD会向CGS电容器充电,致使其电压超过阈值。闸极回跳比率(Gate-bounce Ratio, GBr)即用于此目标;其本质在于,当漏极电压升至输入电压电平时,如果所有流经CGD电容器的电容性电流都流入MOSFET的CGS,这时,CGS电容器的电压仍必须低于电压阈值。此一比例可利用QGD1和QGS1的值从闸极电荷曲线中轻易取得,其中,QGD1是VDS=VIN(CGD彻底充电)和VDS=VGS(CGD已放电)之间的QGD部分,QGS1为VGS=0至电压阈值之间的QGS部分。
对于控制FET方面而言,由于现代功率MOSFET的高增益特性,其电流升降时间由电路和源极电感决定,因此其余能耗则由电压升降时间决定,而这些时间则取决于QGD FOM。因此,单独为控制FET定义一个FOM组合并无实际益处。虽然CWS FOM可达成优化以应用于同步FET,也可用于判定COSS、CGD和CGS之间由于装置结构所产生的不利影响,但是要注意的是,由于现代组件的QGD相当低,因此,QGD不再是控制FET中功耗的主要因素。另外,由于控制FET的体积相对较小,基本上面积限制芯片尺寸的问题已不复存在,因此,采用面积受到限制的FOM亦无法增加优势。
功率MOSFET结构各有优劣
图1标示出目前常用的多种功率MOSFET组件结构。图1a中所示的高密度沟槽结构采用较低的Sp.RDS(on),但QG和QGD较高,因为此两个参数与单元密度成正比。此种结构通常用于开关损耗较无重要性的应用中(如电池保护)。可通过加大单元间距、于沟槽底部加上厚氧化膜以改善此结构的开关性能。
因单元间距加大而导致的Sp.RDS(on)上升的问题,可针对MOSFET漂移区进行设计处理以解决,如图1b所示的场平衡结构。目前最常采用的结构为分裂闸极(或电荷平衡)沟槽MOSFET,如图1c所示。此种结构闸极的正下方采用一个连接源极的屏蔽电极,既可降低QGD,且通过应用降低表面电场(RESURF)原理,漂移区的电阻降至最低。当然,此结构也有其缺点,其需要较高的单元密度(因此闸极电容较高)以获得RESURF状态;另外,采用连接源极的屏蔽电极将产生额外的QG和QOSS,并增加制程的复杂程度。
相反地,和沟槽结构相比,横向MOSFET结构(图1d)由于可采用RESURF技术且毋需增加单元密度,因此,可达成出色的QG和QGD FOM。但由于横向结构需要将漂移区纳入单元间距中,因此,可达成的单元密度较低,导致Sp.RDS(on)较低,进而影响到在小面积封装中为同步FET提供所需低RDS(on)的能力。
图2 低压超级接面结构
横向/分裂闸/超级接面FOM比较
相较于采用表面漏极触点的横向组件而言,横向结构的基板与漏极连接,并在组件主体和基板间增加CDS组件,可产生较高的QOSS结构。分裂闸结构的QOSS值亦较高,因为其依赖漏源极电容的产生以屏蔽闸极电极,达到低QGD和RDS(on)。而超级接面结构毋需增加额外的CDS组件,因此可达成三种结构中最低的QOSS值。
对于同步FET方面,也必须要针对Sp.RDS(on)进行权衡和取舍,因为即便在高开关频率下,导通状态下的损耗仍占大部分比例。图4显示不同技术下RDS(on)与芯片面积的关系。显而易见,横向结构需要更大的芯片才得以获得与沟槽结构相同的RDS(on)。若观察竞争对手产品的最低典型RDS(on)值(VGS=4.5伏特时),将会发现,横向技术可达成的最佳结果为1.4毫欧姆(mΩ)(CSD17312Q5)、分裂闸结构可达成1.1毫欧姆(FDMS7650),而超级接面结构可达成1.1毫欧姆(PSMN1R0-30YLC)。就Sp.RDS(on)而言,竞争产品的基准显示,当VGS=4.5伏特时,横向技术单位面积的RDS(on)值较超级接面技术和分裂闸技术的RDS(on)值高出60%。如图3所示,由于芯片的尺寸不一,上述差异并未充分反映出实际上最低的RDS(on)值。请注意,CSD17312Q5的额定闸极电压为10伏特,而沟槽技术为20伏特。如果采用相同的额定闸极电压组件进行RDS(on)比较,则其差异将更明显。
封装面积缩小带来更多挑战
PL=IO2RDS(on)×tf×dt+fSW (VDR×QG0+1/2VIN×QOSS)‥‥‥‥‥(公式3)
PL=IO2/AA×Sp.RDS(on)+AA×fSW (CWS FOM)/Sp.RDS(on)‥‥‥‥‥‥‥(公式4)
Sp.RDS(on)×IO=AA×(fSW(CWS FOM))1/2‥(公式6)
(Sp.RDS(on)×IO)/(AA×(fSW×CWS FOM)1/2)=1‥(公式7)
表2列出针对Power SO8和QFN3333封装的ACS FOM。对于Power SO8来说,分裂闸技术的ACS FOM最低,代表其最佳性能最易于达成。但由于CWS FOM值为最大(图3),因此,并非最佳的技术选择。值得注意的是,虽然分裂闸结构的开关FOM不如横向技术,但由于横向技术的Sp.RDS(on)较差,因此无法充分利用其开关FOM方面的优势。相反,在这三项技术中,超级接面结构同时拥有最低的Sp.Rds(on)和CWS FOM,因而能够在所需芯片面积内发挥最佳性能。当采用更小的QFN3333封装时,这些技术均无法发挥其最佳性能(三者的ACS FOM>1)。然而,图4所示的结构中,明确标示出需要进一步降低Sp.RDS(on),尽管这样做可能导致开关FOM变差,详见分裂闸技术和横向技术针对面积小于4平方毫米应用的对比。
为展现超级接面功率MOSFET结构的优点,可对系统效率进行测量,并将测量结果与超级接面组件和芯片尺寸相似的场平衡结构组件做比较,工作频率为500kHz和1MHz、电压从12伏特转换为1.2伏特(图6)。当二者的芯片尺寸相同时,前者的导通状态损耗优于后者。当工作频率为500kHz和1MHz时,在30安培全负载和低负载条件下,系统效率均提高2%。超级接面芯片尺寸无论大小,均有可能出现下列情形,如重负载条件下的效率提升会牺牲轻负载效率,而轻负载条件的系统效率提升会牺牲重负载效率。采用RDS(on)较高的控制FET可能会改善效率,因为QGD降低所带来的益处大于RDS(on)升高所带来的坏处。
从上述中可知,控制FET的开关速度可能会受到QGD以外的其他因素限制。可从图7明显看出,低RDS(on)同步FET(PSMN1R2-30YLC)与中等RDS(on)同步FET(PSMN4R5-30YLC)的开关波形的比较。在这两个例子中,PSMN4R5-30YLC均作为控制FET。可明显地看出,开关节点(即控制FET和同步FET形成的半桥中点)的上升时间与控制FET无关。换言之,开关节点电压上升所导致的导通损耗不再受控制FET的QGD限制。
本例中的限制因素为电路通过寄生电感为同步FET的输出电容充电所需要的时间。结果显示使用者必须更加重视降低QOSS,而非CWS FOM隐含的值。断开操作是控制FET功耗最集中的时候,此时低RDS(on)和中等RDS(on) MOSFET的开关节点电压压降几乎是没有差别,这表示开关时间仍然受高侧组件的QGD影响。由于闸极电流比较低,且MOSFET闸极电阻具有内部分配性,控制FET的断开速度通常较慢于导通速度。因此控制FET极可能是决定组件断开时开关速度的影响因素。
新的FOM被用于分析三种不同的功率MOSFET结构。结果显示最近开发的低压超级接面结构可完美结合低RDS(on)、低QG和低QGD等特性,其性能优于横向和分裂闸等竞争产品结构。此外,随着封装尺寸缩小,ACS FOM亦显示出在功率MOSFET设计中,牺牲Sp.RDS(on)以改善开关频率并非为最佳策略。