主动电扫描阵列 (AESA) 雷达是当今先进武器系统的关键组成 , 特别是机载作战系统。而其体系结构的未来发展将超越最初的军事应用,延伸到地球物理测绘、汽车辅助驾驶、自动车辆、工业机器人和增强现实等领域:实际上,这包括任何需要对大量的传感器数据进行调理,融合到模型中进行判决的应用。
典型系统的角色
这一方法避免了采用大量的移动部件,支持雷达实现传统天线采用物理方法无法获得的功能,例如,瞬时改变波束方向,发送和接收同时有多个天线方向图,或者把阵列分成多个天线阵,完成多项功能 —— 也就是,根据地形搜索目标,同时跟踪目标。这些方法只需要在发送器增加一些信号,在每一接收器将信号分开。重叠是一种很好的方法。
一个完整的系统从CPU簇传输到天线,然后再返回 ( 图 1 ) 。 一开始处理时,软件控制的波形发生器产生系统要发送的啁啾。取决于应用,降噪、多普勒处理和隐身的需求会对信号有所损伤。
图 1 .一个非常简化的 AESA 系统结构图。
一开始,接收到的信号实际上通过与反方向相同的通路,在后端要进行更多的处理。在每一个天线单元,限幅器和带通滤波器保护了低噪声放大器。放大器驱动 RF 下变频器,可以结合模拟放大和调相功能。信号从 IF 级传输到基带,每一天线单元的信号到达其模数转换器 (ADC) 。然后,聚束模块把天线信号重新组合成一路或者多路复数数据采样流,每一数据流代表了来自某一接收波束的信号。这些信号流通过大占空比的数字信号处理 (DSP) 电路,进一步调理数据,进行多普勒处理,尝试从噪声中提取出实际信号。
什么时候进行数据转换
目前可以把数据转换器放在 IF 中,进行 IF 频率转换,所有基带处理工作都是数字化的 ( 图 2 ) 。 可以在基带聚束网络中,以数字方式在天线单元之间产生干涉方向图的时延,每一个天线单元并不需要模拟相移器或者延时线。这种划分方法支持 DSP 设计人员把发送和接收通路分解成分立的功能 —— 乘法器、滤波器、用于延时的 FIFO ,以及加法器,在 MATLAB 中对其进行建模,从库中实现它们。可以把要求最苛刻的功能放到专门开发的 ASIC 、 FPGA 或者 GPU 芯片中,而把要求不太高的运算分组成 DSP 芯片或者加速器中的代码。
图 2 .把数据转换器放到 IF 级的最后。
在其最后级,有目的的对接收链进行修改并实现。通过其滤波、聚束和脉冲压缩级,链的任务是从噪声中提取出信号,特别是那些可能承载了环境中实际目标信息的信号。然后,重点从信号转向它们所代表的目标,任务的本质发生了改变。
从信号到目标
下一步一般是多普勒处理。首先,脉冲被送入方格阵列中( 图 3 ) 。在阵列中,每一列含有从某一发射器啁啾返回的脉冲。阵列中会有很多列,这取决于系统能够承受多大的延时。阵列中的行表示返回切换时间:距离阵列的 x 轴越远,发射器啁啾和接收脉冲到达时间之间的延时就越大。这样,延时方格也代表了与某一脉冲反射的目标的距离。
图 3 .多普勒处理方格。
先进系统在阵列中增加了另一个维度。通过把天线划分成子阵列,系统可以同时发送多个波束,然后,使用相同的多旁瓣天线方向图设置接收器进行监听。或者,系统通过聚束或者使用合成孔径方法来扫描波束。现在,当装入压缩后的脉冲时,系统建立一个三维方格阵列:一个轴上是发送脉冲,第二个是返回延时,第三个是波束方位( 图 4 ) 。现在,对于每一路脉冲,我们有两维或者三维方格阵列,同时表示距离和方向 —— 表示物理空间。这种存储器的排列是空时自适应处理 (STAP) 的起点。
图 4 .多维方格为STAP建立矩阵。
概念上,实际情况也是如此,构成自适应滤波器是一个矩阵求逆过程:这一数据要与哪一矩阵相乘,得到噪声中隐藏的结果 ? 据Altera资深技术营销经理Michael Parker,推测的隐藏方向图信息可能来自多普勒处理过程发现的种子,从其他传感器采集的数据,或者来自智能数据。运行在 CPU 下游的算法把假设的方向图插入到矩阵方程中,解出能够产生预期数据的滤波函数。
两种体系结构
作为对比,汽车或者机器人系统设计人员会从完全不同的角度看系统。从嵌入式设计人员的角度看,系统只是一大段软件,有一些非常专用的 I/O 器件,以及需要进行加速的某些任务。有经验的雷达信号工程师考虑到信号处理和通用硬件的相对规模,可能会对这一方法不屑一顾。很显然,机载多功能雷达的数据速率、灵活性和动态范围要求采用专用 DSP 流水线以及大量的本地缓冲才能完成实时处理。但是对于有几个天线单元的不同应用,简单的环境、更短的距离和较低的分辨率,以 CPU 为中心的观点带来了一些有意思的问题。
实际结果可能与以 DSP 为中心的方法完全不同。例如,以 CPU 为中心的方法一开始假设在一片通用 CPU 上执行所有工作。如果速度不够快,这一方法转向多片 CPU ,共享一个分层的连续存储器。只有当多核不足以完成任务时,这一方法才转向优化的硬件加速器。
在要求最严格的应用中,同一个系统设计可能会同时采用两种体系结构方法。几乎每一任务严格的带宽和计算需求都导致采用专用硬件流水线和存储器例化。要求大幅度降低功耗可能会迫使做出采用高精度数字方法的决定,这使得在任务之间共享硬件变得越来越复杂。
Frantz 指出了关于模拟 / 数字边界的问题。他说:“我们需要重新考虑模拟信号处理。三十年以前,我们开始告诉系统设计人员只要做好数据转换就行,我们采用数字方法完成其他所有工作。但是实际上,在 8 位分辨率,模拟和数字方法大概是相同的。模拟是不是更好一些 ? 这取决于在您的系统中,‘更好'的含义是什么。”
图 5 .一个理想的低性能AESA系统。
AESA 雷达系统不但为研究实现策略提供了丰富的环境,而且还提供了方法来研究有大量信号的系统。这些有源阵列分布在军事等多种设计应用中,所以,不应该局限在传统的嵌入式设计思路中。因此,对于完全不同的需要大量信号的领域要有新思路,这包括信号智能和网络安全等应用。这是值得注意的领域。