(3)
式中Xi,j(n)为在每一测量位置重复测量M 次的SPR二维剖面数据,i是测量位置的序号,通常称为道数,j是重复测量的序号;Yi(n)是经波形平均输出的UWB-SPR二维剖面数据。式(3)处理结果的误差e(n)满足MSE准则,即
(4)
式(3)适用于系统重复频率较高时,在每道测量中做平均处理,而不是对道间数据的平均处理,这是因为SPR的回波信号随着道而变化,道间数据的平均运算将降低回波信号的能量。
3.2、中值滤波算法
中值滤波算法是对一窗口内所有数据按幅值大小进行排序,取排序后序列的中间值作为原窗口中心数据的幅值;只要选取一个有效的窗口宽度,就可以对UWB-SPR二维的剖面数据序列组,进行平滑处理,消除序列中的异常部分,抑制掉峰值噪声。中值滤波尤其适用于脉冲噪声的抑制;而GSM 的随机射频干扰信号具有窄脉冲的特性,可用中值滤波的方法有效去除回波信号中的异常部分,且能较好地保护原始回波信号。中值滤波器具有低通滤波的特性,窗口的选取有较大的影响,要保证完全去除窄带脉冲干扰,中值滤波器数据窗的宽度必须大于脉冲干扰时宽τ的2倍。窗口宽度太小,噪声抑制不彻底;窗口宽度太大,运算量较大,影响处理速度。
中值滤波算法的表达式为
Y(i,n)=med(X(i+k,n),k∈[-M,M]),n=0,…,N-1 (5)
式中X(i,n)为UWB-SPR二维剖面数据,n是表示深度的采样时间变量,N是一道测量的最大采样点数,i是道数,imax=D,i+k是中值滤波窗内所含道数的序号,Y(i,n)是经中值滤波输出的UWB-SPR二维剖面数据,2M +1是中值滤波数据窗的宽度,med表示对窗内的数据排序且取中值。D道数据的完整处理算法
(6)
4、实测处理结果和算法性能评估
本实验采用一实验性SPR系统,系统发射机的中心频率为1GHz,3dB处带宽约为1GHz,信号的时宽在0.4ns左右,所选用采样时窗2Ons,每道采样512点;探测媒质为分层的混凝土路面(有沥青层和混凝土层),探测深度为0.6m左右;射频干扰信号是离天线10cm距离内两个GSM手机呼叫时的发射、接收信号,由于GSM 手机离天线距离较近,天线接收的手机信号功率远大于广播和电视信号的功率。所以可以忽略空间中所存在的其它随机性RFI。在此处手机天线处于SPR天线的近场区,由于手机天线尺寸较小且功率远小于SPR天线的功率,而且SPR在手机干扰下所接受的信号基本稳定,故本实验忽略两个天线的近场效应,此忽略不影响本文算法处理的结果。
4.1、两种算法的处理结果
为完成波形平均,需要在每一道进行重复测量和采样。该系统重复额率为100kHz。天线在每道有效停留时间内,由触发脉冲为系统产生一个M次重复测量的时隙。根据算法性能和波形平均次数的关系(见图4),以及系统的存储空间和运算速度等的要求,设定重复测量100O次,即M =1000,N=512,则波形平均的结果为
(7)
算法的计算结果见图2。图2(a)显示了每一道数据中都随机出现射频干扰的尖峰;图2(b)是平均后的结果。各道的尖峰干扰已被消除。
(a)波形平均前的数据图 (b)波形平均后的数据图
图2、波形平均前后的数据图
中值滤波不需要重复测量,它的关键在于中值滤波器长度的选择,这将直接影响着数据处理的效果和处理的速度。本实测处理中采用的中值滤波器长度2M +l=51,相当于1.1ns,满足M >τ;总测量道数为D=166。每道采样点数N=512。具体计算过程如下:
(8)