如何降低射频同轴连接器电压驻波比

2014-02-15 来源:微波射频网 字号:
图中L为两绝缘支撑之间的距离,l为绝缘支撑到基准面之间的距离L=2l;B为绝缘支撑的厚度,L1为绝缘支撑到外导体直径变化处的距离。同轴腔中的谐振不仅由绝缘支撑内部的场决定,而且外部的空间距离也有相当大的影响,即两个绝缘支撑之间的距离将影响谐振频率,当L≥2D时,绝缘支撑之间的相互影响可减至较小,而当L=3D时,绝缘支撑之间的相互影响完全可以忽略不计。绝缘支撑距外导体的直径变化处L1=D时,相互影响减至最小,而当L1=1.5D时相互影响可以忽略不计。因此当L的取值小于D时,往往影响到射频连接器的电压驻波比。

2.4 过渡设计

在连接器的结构设计中,由于界面不同或配接的电缆的直径不同,经常会遇到内、外导体直径的变化,产生不连续电容。为了补偿阶梯产生的不连续电容,需要采取一定的补偿方法,如果补偿过渡设计不当,会严重影响射频连接器的VSWR,对于过渡设计的结构,常用的结构如下:

2.4.1. 错位过渡

为了满足导体直径变化的需要,采用内、外导体错开一段距离的办法进行补偿,也有人称作阶梯补偿、直角补偿等。如图5所示:粗端内、外导体直径分别用d和D表示,细端内、外导体直径分别用d1和D1表示,错开的距离用a表示。

图5.错位补偿示意图

<3时,  
 
式中K是取决于特性阻抗的常数。
式中:当特性阻抗为50Ω时,K=3.09;
当特性阻抗为75Ω时,K=3.04。
当同轴线为固体介质同轴线时,

式中:K同上,εr为绝缘介质的相对介电常数。
当2<<5时,
空气同轴线 
固体介质同轴线

2.4.2. 锥体过渡

锥体过渡形式如图6所示:

图6.锥体过渡结构图

锥体过渡又称渐变过渡,这段过渡段的阻抗可按下式计算:

对于空气介质段,则为:

以上适用

2.4.3. 类中值过渡

在连接器直径很小的情况下,在两个特性阻抗截面之间可以进行补偿
当Z1<Zo和Z2>Zo

满足:

图7.类中值过渡结构图