图2、中频IF2 频率选择
(2) 第一中频频率选择
当IF2 选定后,假设设备采用2 次变频,则IF1频率为中频输入IF(设备输入频率为L 频段信号) 。此时IF 与IF1 相隔较近,导致本振频率无法抑制,所以方案必须采用3 次变频。只有IF1 选择为一个较高的中频上,才能避免出现上述的问题。
从IF1 中频选择仿真分析结果如图3 所示。图中①区域为没有杂散区域; ②区域为存在杂散区域。在0~17 GHz 范围内,只有0~450 MHz 范围内没有杂散,在其他频率内均存在不同组合的杂散分量。当频率超过12. 35 GHz 后杂散分量只有- 2IF1 +3LO1 这一个杂散,这一杂散可以通过降低IF1 的电平,使得杂散电平降低到设备的要求值。
图3、中频IF1 频率选择
因为L/ Ku 模块方案已经很成熟,最终中频IF1频率选择在Ku 频段,缩短了设备设计周期。
2. 2、杂散分析
确定中频频率后, 进行杂散分析。第1 次混频后的杂散分析,在IF1 带内无杂散频率产生,带外主要杂散为f (2 ,1) , 通过混频后增加带通滤波器, 完全可以将杂散电平抑制到很低的水平, 可以忽略。需要注意的是,LO1 本振频率多采用倍频的方案实现,为了防止LO1 本振的基频频率的多次谐波随LO1 本振进入混频器,LO1 本振输出后要增加滤波器,用来滤除无用的LO1 本振谐波。
第2 次混频杂散分析,在IF2 频率范围内,主要杂散为f ( - 2 ,- 2) 、f (3 ,- 2) 、f ( - 4 ,3) 等组合频率,带内的组合杂散最低次数为4 次,由于第2 次混频采用双平衡混频器,m 为偶数的被抵消。虽然7 次产物落入带内, 但可以通过减小输入的IF1 电平,来控制组合干扰的幅度,完全可以满足变频链路通用指标的要求。
第3 次混频后的杂散分析,在EHF 频率范围内主要杂散信号为f (1 ,2) 。通过调整中频入口电平,可以降低杂散信号电平幅度,同时混频后增加腔体滤波器,对杂散也有一定的抑制。通过以上分析,只要控制好各级混频器的输入电平,杂散可以控制在要求的范围内。
2. 3、电平分配
根据以上杂散计算可知,为了降低第2 次混频产生的杂散, 必须降低混频器的输入电平到- 20 dBm以下。在此基础上合理分配每级的增益,以保证设备的各项指标满足要求。
3、关键技术
3. 1、中频选取
EHF 频段上变频器采用3 次变频技术,中频频率的选取尤其重要,一个合适的中频频率,不但可以降低设备的杂散电平,而且还可以降低设备的设计难度。
3. 2、高精度的制造和装配工艺
在EHF 频段,波长很短,相同电长度的电路元件实际尺寸会比低频段的元件尺寸小很多,所使用的放大器、混频器元件只能采用没有封装的管芯,这就对印制板的加工精度、元件安装精度、焊接精度提出很高的要求。在EHF 频段有些关键尺寸的加工精度要求小于0. 01 mm。
由于同样的原因,在该频段设备装配过程中要求更加严格。装配过程主要包括:裁板、粘接、键合等工序。特别是在粘接及键合工序上更加容易出问题。通过对制造和装配工艺的试验摸索,很好地解决了毫米波频段高精度制造和装配工艺问题。