声波在上下界形成串联谐振
在某交变电压V(fs)作用下,其极化向量P与电场E同相位,声波在上下界形成串联谐振,此时体声波谐振器的电学阻抗呈最小值。
在某交变电压V(fp)作用下,其极化向量P与电场E反相位,声波在上下界形成并联谐振,此时体声波谐振器的电学阻抗呈最大值。频率fp处声波损耗最小因此该声信号能顺利传输通过。
用以表征体声波谐振器性能的参数,除了上面所述的谐振频率f(fs,fp)之外,还有有效机电耦系数Keff2和品质因数Q,Keff2和Q分别定义为:
有效机电耦合系数Keff2用来表示体声波谐振器串联谐振频率fs和并联谐振频率fp的相对频率,同时也表示薄膜体声波谐振滤波器的带宽,Keff2越大,则谐振器构成的滤波器的带宽也越大,Keff2主要由压电薄膜的材料参数决定。
品质因素(Q)可用来判断谐振器声波损失的情形;主要有两个原因会造成声波的损失:
第一是薄膜本身品质的好坏。一般来说,成长品质不好的薄膜会有高应力、高密度的晶界以及大量的缺陷和杂质,这些缺陷都会造成声波的散射,因而减低品质因素。而高声波波速的材料,由于声波在传递时不易被吸收,因此有较高的品质因素。
第二是薄膜的表面粗糙度。电极和压电薄膜表面粗糙度大,会造成声波的散射损失以及电极的电损失(Electrical Loss),而造成品质因素的降低。因此,对于体声波谐振器元件来说,只要是声波传递的路径,不论是压电层或是反射层,各层薄膜的成长品质都会影响整体元件的品质因素。
三种FBAR结构
现在主流的FBAR结构主要有三种:空气隙型、硅反面刻蚀型和固态装配型。
1、空气隙型
此种FBAR是基于MEMS的表面微加工技术(surface micromachining),在硅片的上表面形成一个空气隙以限制声波于压电震荡堆之内。通过先填充牺牲材料最后再移除之的方法制备空气腔以形成空气一金属交界面。此方法可以传统的硅艺兼容。
2、硅反面刻蚀型
此种FBAR是基于MEMS的体硅(Si)微加工技术(bulk micromachining),将Si片反面刻蚀。在压电震荡堆的下表面形成空气一金属交界面从而限制声波于压电震荡堆之内。此技术的缺点是由于大面积移除Si衬底,导致机械牢度降低。