开槽波导3次谐波回旋行波放大管非线性理论与数值模拟

2012-11-14 来源:互联网 字号:

t135.gif (3328 bytes)

图1 中空外开槽波导及电子注横截面示意图.虚圆为电子注横截面示意图

  在Ⅰ区(0<r<a)中

g135-1.gif (1033 bytes) (1)
g135-2.gif (984 bytes) (2)
Ez=0 (3)

在Ⅱ区(a<r<b)中

Ez=0 (4)
Er=0 (5)

g135-3.gif (1225 bytes) (6)

其中

g135-4.gif (1265 bytes) (7)
B0=[-J′0(kcb)/Y′0(kcb)]A0 (8)

  在以上各式中,E0为高频场振幅,Γ为角向谐波数,ΑΓ为角向Γ次谐波项的振幅系数,kc为截止波数,q为开槽序数(q=1,2,…,N),m代表高频场的角向模式(m=0,1,2,…,N-1).AΓ的值以及电路的色散关系可由电磁场在r=a处的边界条件确定.

g136-1.gif (2021 bytes) (9)

色散关系为

g136-2.gif (3067 bytes) (10)

  式(9)表明,只有当空间谐波次数Γ=m+lN时,非零空间谐波项才存在.角向模式决定相邻隙间高频场的相位差,对于每一具体模式,此相位差值为m2π/N.每一角向模式均由无数个角向谐波项组成,其谐波振幅系数由式(9)决定.在所有角向模式中有两个比较重要的模式,即π模式和2π模式,其角向谐波相对强弱分布情况见图2.由图2可知,2π模式的能量主要集中于零次谐波项中,而π模式的能量主要集中于±N/2次谐波项中.因此,π模式较2π模式更适合于高次回旋谐波互作用.如果电子注回旋谐波次数(用S表示)已经设定,那么槽数N的选择应保证最强非零次角向谐波项的次数Г与回旋谐波次数S相等.如,对于π模式,槽数N应等于2S.

t136.gif (4191 bytes)

图2 角向谐波振幅对角向谐波数(Γ)的相对分布示意图.(a)π模式(m=N/2,N=6,θ0=15°),(b)2π模式(m=0,N=6,θ0=15°)

  当角向模式m和槽深(即a/b的值)确定后,截止波数kc的值可由式(10)通过数值求解方法求得[6,8,9].

三、自洽非线性理论
  在热腔中,高频场沿轴向呈缓变分布状况,其对横坐标(r,φ)的分布函数与冷腔情况相同.下面给出Ⅰ区中的热腔高频电场分量(TE波)表达式.

g136-3.gif (1095 bytes) (11)
g136-4.gif (1019 bytes) (12)
Ez=0 (13)

  上述各式中,Cmn为电场归一化系数,f(z)为一复函数,代表高频场沿Z轴的缓变分布情况.Cmn的值由下式求得

g136-5.gif (932 bytes)
g136-6.gif (1857 bytes) (14)

  以下是自洽非线性注波互作用常微分方程组.
  从洛伦兹公式
g136-7.gif (906 bytes)出发[8],可推得电子在高频场(E,B)和直流磁场(B0)作用下的运动方程.每个电子有6个运动参量方程,这里仅给出了速度分量及动量空间角3个运动参量方程.

g136-8.gif (1819 bytes) (15)
g136-9.gif (1072 bytes) (16)
g136-10.gif (2285 bytes) (17)

  以上各式中,m0和γ分别为电子的静止质量和相对论因子,φ为动量空间角,u=γv,v为电子的速度,如图1所示.
  从有源麦克斯韦方程出发,经过一系列复杂的推导并对电流进行离散化后得到非线性注波互作用场方程为

g136-11.gif (3546 bytes) (18)

上式中,P为在一个高频场周期内所取的电子注批数,M为考虑电子注厚度因数而将电子注化分的圈

主题阅读:行波放大管