9.3 LC正弦波振荡器
一、LC并联谐振回路
LC振荡电路主要用来产生高频正弦波信号,电路中的选频网络由电感和电容组成。常见的LC正弦波振荡电路有变压器反馈式、电感三点式和电容三点式。它们的选频网络采用LC并联谐振回路。
1.LC并联谐振回路的等效阻抗
图1 LC并联谐振回路
LC并联回路如图1所示,其中R表示回路的等效损耗电阻。由图可知,LC并联谐振回路的等效阻抗为
(1)
考虑到通常有 ,所以
(2)
2.LC并联谐振回路具有以下特点
由式(2)可知,LC并联谐振回路具有以下特点:
(1)回路的谐振频率为
或 (3)
(2)谐振时,回路的等效阻抗为纯电阻性质,并达到最大值,即
(4)
式中, ,称为回路品质因数,其值一般在几十至几百范围内。
由式(2)可画出回路的阻抗频率响应和相频响应如图2所示。由图及式(4)可见,R值越小Q值越大,谐振时的阻抗值就越大,相角频率变化的程度越急剧,选频效果越好。
LC振荡电路主要用来产生高频正弦波信号,电路中的选频网络由电感和电容组成。常见的LC正弦波振荡电路有变压器反馈式、电感三点式和电容三点式。它们的选频网络采用LC并联谐振回路。
(3)谐振时输入电流与回路电流之间的关系
由图1和式(4)有
通常 ,所以 。可见谐振时,LC并联电路的回路电流 或 比输入电流 大得多,即 的影响可忽略。这个结论对于分析LC正弦波振荡电路的相位关系十分有用。
二、变压器反馈式LC振荡电路
1.电路组成
图1所示为变压器反馈式LC振荡电路。由图可见,该电路包括放大电路、反馈网络和选频网络等正弦波振荡电路的基本组成部分,其中LC并联电路作为BJT的集电极负载,起选频作用。反馈是由变压器副边绕组N2为实现的。下面首先用瞬时极性法来分析振荡回路的相位条件。
2.相位平衡条件判断
相位平衡条件的判断参考动画。
图 1 变压器反馈式LC振荡电路 |
3.起振与稳幅 变压器反馈式LC正弦波振荡电路起振的幅值条件是环路增益大于1,只要变压器的变比和BJT选择适当,一般都可以满足幅值条件。 而振荡的稳定是利用放大器件的非线性来实现的。当振幅大到一定程度时,虽然BJT集电极的电流波形可能明显失真,但由于集电极的负载是LC并联谐振回路,具有良好的选频作用,因此输出电压的波形一般失真不大。 |
三、三点式LC振荡电路
图1 电感三点式振荡电路
LC振荡电路除变压器反馈式,还常用电感三点式和电容三点式振荡电路,现分别讨论如下。
1.电路组成
图1所示为电感三点式振荡电路的原理图。这种电路的LC并联谐振电路中的电感有首端、中间抽头和尾端三个端点,分别与放大器件的集电极、发射极(地)和基极相连,反馈信号取自电感L2上的电压,因此,习惯上将图1所示电路称为电感三点式LC振荡电路,或电感反馈式振荡器。
2.相位平衡条件判断
前面讨论LC并联谐振回路时已得出结论:谐振时,回路电流远比流入或流出LC回路的电流大得多。因此,电感中间抽头的瞬时电位一定在首、尾两端点的瞬时电位之间,即
(1)若电感的中间抽头交流接地,则首端与尾端的信号电压相位相反。
(2)若电感的首端或尾端交流接地,则电感其它两个端点的信号电压相位相同。
根据分析,图1电路满足相位平衡条件。
3.幅值条件及振荡频率
至于振幅条件,则容易满足,只要适当选择BJT的b和L2/L1的比值,就可以实现起振。考虑到L1、L2间的互感M后,电路的振荡频率可近似表示为
(1)
电感三点式正弦波振荡电路不仅容易起振,而且采用可变电容器能在较宽的范围内调节振荡频率,其工作频率范围可以从数百千赫兹至数十兆赫兹,所以用在经常改变频率的场合(例如收音机、信号发生器等)。电路的缺点是,反馈电压取自L2上,L2对高次谐波(相对于f0而言)阻抗较大,因而引起振荡回路输出谐波分量增大,输出波形较差。
四、石英晶体振荡电路
频率稳定度是衡量振荡电路的质量指标之一,一般用 来表示,其中f0为振荡频率,Df为频率偏移。频率稳定度有时还附加时间条件,如一小时或一日内的频率相对变化量。前面介绍的RC振荡电路的频率稳定度大于10–3,普通LC振荡电路也只能达到10–4。石英晶体振荡电路的频率稳定度可达10–9甚至10–11,这是由于采用了具有极高Q值的石英晶体元件。
1.结构
图 1 石英晶体结构
石英晶体是一种各向异性的结晶体,它是硅石的一种,其化学成分是二氧化硅(SiO2)。从一块晶体上按一定的方位角切下的薄片称为晶片(可以是正方形、矩形或圆形等),然后在晶片的两个对应表面上涂敷银层并装上一对金属板,就构成石英晶体产品,如图1所示,一般用金属外壳密封,也可有用玻璃壳封装的。
2.压电效应
石英晶片所以能做振荡电路是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。
3.等效电路和谐振频率
石英晶体的压电谐振现象可以用图XX_02所示的等效电路来模拟。等效电路中的C0为切片与金属板构成的静电电容,L和C分别模拟晶体的质量(代表惯性)和弹性,而晶片振动时,因摩擦而造成的损耗则用电阻R来等效。由于晶片的等效电感L很大,而C和R很小,因此Q很大,可达104~5´105。
图2为石英晶体的代表符号、等效电路和电抗特性。
(a)代表符号 (b)等效电路 (c)电抗—频率响应特性 |
由等效电路可知,石英晶体有两个谐振频率,即
(1)当R、L、C支路发生串联谐振时,其串联谐振频率为
(1)
由于C0很小,它的容抗比R大得多,因此,串联谐振的等效阻抗近似于为R,呈纯阻性,且其阻值很小。
(2)当频率高于fs时,R、L、C支路呈感性,当与C0发生并联谐振时,其振荡频率为
(2)
由于 ,因此fs与fp非常接近。
通常石英晶体产品所给出的标称频率既不是fs也不是fp,而是外接一小电容Cs时校正的振荡频率,Cs与石英晶体串接如图3所示。利用Cs可使石英晶体的谐振频率在一个小范围内调整。Cs的值应选选择得比C大。可以计算接入Cs后新的串联谐振频率
图3 谐振频率的调整
将上式展开成幂级数,并注意到 ,从而略去高次项,可近似得
(4)
当 时, ,而当 时, 。实用时,Cs是一个微调电容,使f¢s在fs与fp之间的一个狭窄范围内变动。可以分析得出Cs并不影响并联谐振频率。
4、石英晶体振荡电路
石英晶体正弦波振荡电路的形式是多种多样的,但基本电路只有两类,即并联型和串联型石英晶体正弦波振荡电路,前者石英晶体工作在接近于并联谐振状态,而后者则工作在串联谐振状态。
图1a所示为一并联型石英晶体正弦波振荡电路。由图可见,这个电路的振荡频率必须在石英晶体的fs与fp之间,即只有晶体在电路中起电感作用才能组成电容三点式电路,满足相位平衡条件,考虑到通常 , ,因此,振荡频率主要取决于石英晶体与 的谐振频率。
图1b所示为一串联型石英晶体正弦波振荡电路。从反馈支路的k点断开,在T1的发射极与地之间加输入ve为(+)极性的信号,则经过共基极电路和共集电极电路的输出信号vo应为(+)极性。当 时石英晶体呈纯阻性,相移为零,此时vo经Rf和石英晶体反馈到k点的电压vf与ve同极性,满足相位平衡条件。至于幅值平衡条件可通过调节电阻Rf的大小得到满足。
|
|
(a) 并联晶体振荡器 |
(b)串联晶体振荡器 |