无线通信系统的环境适应性

2013-09-06 来源:中兴通讯技术 字号:
一般设备设计上已经考虑使得零部件在设计寿命内工作处于浴盆曲线的底部,在设计范围内工作时温度并不是设备发生故障的主要原因。设备损坏主要的原因常常来自于一些不可控制因素,使得工作环境超过设计能够支持的极限温度。从功能性能角度来看,温度会影响数字逻辑器件的工作频率,使得设计裕度被打破而导致功能异常;有的器件,例如恒温晶体振荡器(OCXO)内部具有加热恒温槽,在外部温度低于内部温度下才能起到恒温的作用,当温度范围超出标准时,时钟保持性能可能受到严重影响。这些都还是可恢复的异常。在更恶劣的情况下,芯片的漏电流随着温度升高以指数方式增大,在额定温度点附近功耗随温度快速增加,反过来带动芯片的温度进一步增加而导致热失效;高温下焊点、机械结构可能由于蠕变而失去强度;PCB 板可能发生碳化、分层等失效[6]。

设备设计上更关注的是如何使得这些外部的异常更不容易发生,异常发生的时候系统如何自动保护,同时兼顾越来越精细的OPEX 优化考虑。第一,对工作的环境提出了更明确的要求,根据实际的气候、业务模型等条件,把设备的工作环境作为一个系统来进行指标分配设计及综合成本评估,而不是只关注设备本身;第二,当服务质量许可的情况下,当出现异常状况时,系统通过自动降低负荷,甚至局部断电的方式进行自我保护,在异常解除时恢复工作,增强实际的可用性和可靠性。

随着多年的扩容、2G 向3G 换代以及多网多制式的共存,单个站点的容量密度也远高于过去。没有重新设计的机房或方舱,可能对设备的工作环境带来较大的影响。文献[7] 给出了机房换气设计的要求。如果机房达不到要求,则会导致设备过温。在实际应用中,因为空调设备被盗、损坏,通风装置损坏或者过滤网被堵塞等情况经常出现。有的站点建设时间较早,容量很低,经过长期运行通风设施存在问题。存在问题的设施如图4 所示。当进行更换扩容后,这样的站点经常频繁出现高温告警。

图4 机房空调被盗损、封闭空间密集 安装等,带来设备散热问题

设备散热设计通过仿真、测试验证的方法在行业内已经广泛使用。通信设备内部相对环境均存在一定的温升,基本不存在除设备本身发热之外的其他热负荷,所产生的热量基本属于显热,主要通过强制对流进行散热,这样使得我们在考虑散热的计算时候相对较为简单。在保持对流空气温升一定的情况下,单位功耗需要的空气流量是一定的。这个是设备设计的物理限制,无法突破。散热需要的空气体积可用如下公式计算:L = Qs/(Cp×ρ×ΔT),其中L 为空气的体积,Qs 为显热,Cp 为空气的平均比定压热容,在设备的工作范围内,可以认为是一个常量,ρ 为空气的比重。假设设备设计最高工作环境温度为55℃ ,允许出风口空气温度为65℃ ,温升10℃ ,系统热负荷为700W,则系统一个小时需要的风量约为200 m2。

这只是一个指导性的结果,不能替代系统内部的热设计,但是综合考虑设备风速、通风口面积等设计,如果不能达到这样的风量,则只能降低设备的热负荷,增加允许的系统温升,或者采用其他补充的散热方式来满足散热要求。 在高海拔区域,因为气压下降,风冷的效果会受到进一步的影响。但是高原地区一般也不会出现高温等环境,设备的散热环境并不会将最差因素叠加。在整个热系统设计中,可以根据实际情况,做出成本优化又能保证可靠性的设计。

综上所述,散热的设计不仅仅涉及到器件的可靠性,而是要考虑整个系统的工作模式以及降低CAPEX、OPEX 的需求,结合设备外运行环境如噪声要求等协同解决,在各种相互矛盾的限定因素中平衡优化。在空间受限、集成密度高、空间局限的情况下,噪声和风扇的耗电相对就会较大,如果希望低噪音,就需要加大通风口的面积,降低风速,或者控制设备内处理功耗,降低集成密度。对于环境温度很高,甚至考虑采用压缩机等制冷设备散热,但是也可能会带来更高的能耗和噪音,同时压缩机热端同样也需要考虑如何散热。

2.2 灰尘、油烟

灰尘、油烟对设备最主要的影响体现在散热上。灰尘会堵塞防尘网或空气过滤设备,附着在散热器上的灰尘,还会直接影响器件散热。灰尘还会带来其他一些影响,例如在连接器上堆积的灰尘,可能影响到新插入组件的连接可靠性。一般情况下,连接器设计的滑动行程和摩擦力已经考虑了插入过程推开灰尘,但是偶发的大颗粒灰尘堆积存在隐患。中兴通讯软基站设备采用了连接器保护一体式假单板设计,经过多种试验分析,能够有效防止这样的问题发生,同时还兼顾平衡风阻的作用。

根据中国大气监测的情况,很多城市地区总悬浮颗粒物(TSP)平均保持在2 级,即0.2 mg/m3 的水平上[8-10]。新闻报道显示在2006 年4 月沙尘暴天气下,北京TSP 达到0.35 mg/m3,峰值达到2 mg/m3。按照多地区平均水平0.2 mg/m3 来算,根据上面散热能力的计算,700 W 系统散热每小时气流中所包含的颗粒物约为0.04 g,每年通过系统冷却系统的悬浮颗粒物约为350 g。如果对空气过滤,这些灰尘会使得系统的维护周期大大缩短,维护工作量以及OPEX 上升。实际上,如果不过滤,大部分颗粒物会直接穿过系统,只有一小部分会在系统内,主要在气流受到阻碍的区域堆积,例如连接器。大量的分析认为,这样的颗粒灰尘对系统可靠性的影响并不大,系统防尘设计上,应该让这样的灰尘无障碍的穿过系统。

在多个现场采集的灰尘分析中,很多灰尘呈现絮状、纤维状,来源可能是植物(如杨树、柳树飘絮)、摩擦脱落的衣物纤维、植物焚烧产生的飘浮物等,这些纤维状灰尘吸附在空气过滤设备上,积累后就会增加系统风阻,影响系统散热,同时,随着空气过滤系统的网孔堵塞,更小颗粒的灰尘会被过滤,系统堵塞速度变快。因为气流摩擦产生静电的关系,絮状及颗粒状灰尘也会吸附在包括风扇扇叶、单板上,部分影响到系统的散热(如图5、图6 所示)。在这种环境条件下,要通过过滤、隔离等手段,尽量避免灰尘进入设备,在防护设施上,也需要考虑增加通风面积、定期除尘等方式,保证整个环境的散热通畅。

图5 某地恶劣环境工作2 个月的接入网设备防尘网被沙尘堵塞

图6 潮湿环境下防尘网灰尘结块黏附

灰尘中存在的盐类会吸收空气中的水分引起腐蚀。如果现场存在高湿度、甚至油烟,如老式建筑居民楼道、地下车库、农村民房等,灰尘会更容易黏附在设备上。在个别地方,甚至出现过设备防水百叶窗开口以及通风孔全部被灰尘及油烟混和物堵塞的现象。在这种场合下,往往结合腐蚀危害,需要整体考虑,采用例如热交换器柜等防护设备,在存在难以清理的油烟等环境条件下,应尽量避免安装设备,如不得不安装,应尽量采用密闭型的自然散热设备。

工业上对灰尘的处理有很多经验,包括惯性除尘、喷淋、过滤、静电吸附等多种方式得到应用[11]。对于通信设备,灰尘没有工业环境恶劣,而能够提供的动力、空间都非常有限;设备分散安装在各个站点,维护周期长甚至希望能够免维护,同时不允许出现高噪音、强烈振动。可以采用的主要就是惯性除尘、过滤等方法,减少一部分进入设备的灰尘。

从上面的分析可以看出,对于系统的防尘设计,也需要结合实际环境因素以及降低CAPEX 和OPEX 的需求。对很多室内应用,可以允许灰尘直接进入和穿过设备,减少维护开销;对于部分恶劣环境,考虑增加过滤装置,但需要考虑装置的容尘能力以及维护开销;对于部分运营商愿意进行设备维护,不希望灰尘进入设备的,可以使用防尘网;对于存在腐蚀性物质等的环境,要考虑采用内外环境隔离的设备。

2.3 湿度和腐蚀

从功能和性能角度,湿度和温度一起影响到空气和板材的介电常数,有可能减少高速设计的裕度,引发设备误码率增加等异常。从设备可靠性来看,湿度会加速腐蚀的发生,使得灰尘、有害气体等对设备的损害加剧。对于部分工艺不良的器件,空气中的水汽可能带来破坏性的后果。例如当半导体芯片钝化层不良时,在潮湿空气中可能发生内部分层,通过非偏置的高度加速应力测试(uHAST)试验可以识别此类工艺缺陷;密封不良的电阻器可能因为空气中含硫,发生硫化而损坏,需要通过选型规避。

一般认为,金属在洁净大气中,在相对湿度小于60%~70% 的干燥大气中,发生腐蚀的速度非常慢,当相对湿度大于60%~70%时,腐蚀速度大大加快。如果空气中存在H2S、SO2 等气体时,腐蚀速度也会加快。临界湿度随着空气成分、金属成分不同而有差异,积尘中的粒子也会增加吸附而导致腐蚀速度增加。但是总体上可以认为,通过控制使相对湿度小于60%,可以防止大部分大气腐蚀的发生[12]。

控制湿度的一个重要手段就是控制温度。设备中空气被加热时主要是显热增加,饱和水气压增大,绝对水气压并没有变化,导致空气的相对湿度降低。假设设备入口处的空气湿度接近饱和,设备内空气温升达到10 度左右,即可以使得空气相对湿度降低到60%以下,避免腐蚀的发生。这个方法存在局限性:第一,为了保证低湿度,对空气进行加热,使得设备工作的温度升高,对于需要高温运行的设备,相当于恶化了设备的工作温度环境;第二,空气在设备中是逐渐被加热的,在进风口附近,湿度较高,灰尘堆积也较多,更容易发生腐蚀。

主题阅读:无线通信