LTE上行采用了单载波传输方式(DFT-S-OFDM),在LTE-A上行多载波聚合传输时,经过对OFDM和N x DFT-S-OFDM之间的评估之后,最终传输方式采纳了N x DFT-S-OFDM的形式,即其中每个成员载波按独立的DFT-S-OFDM传输。
4、多天线增强(Enhanced Multiple Antenna Transmission)
多天线技术的增强是满足LTE-A峰值谱效率和平均谱效率提升需求的重要途径之一。
LTE Rel.8下行支持1,2,4天线发射,终端侧2,4天线接收,下行可支持最大4层(Layer)传输。上行只支持终端侧单天线发送,基站侧最多4天线接收。LTE Rel.8的多天线发射模式包括开环(Open loop)MIMO,闭环(Closed loop)MIMO,波束成型(Beamforming,BF),以及发射分集。
除了单用户MIMO(single-user MIMO,SU-MIMO),LTE中还采用了另外一种谱效率增强的多天线传输方式,称为多用户MIMO(Multi-User MIMO,MU-MIMO),多个用户复用相同的无线资源通过空分的方式同时传输。
LTE-A中为提升峰值谱效率和平均谱效率,在上下行都扩充了发射/接收支持的最大天线个数,允许上行最多4天线4层发送,下行最多8天线8层发送,从而LTE-A中需要考虑更多天线数配置下的多天线发送方式。
(1)上行多天线增强
LTE-A上行除了需要考虑更多天线数配置外,还需要考虑上行低峰均比的需求和每个成员载波上的单载波传输的需求。
对上行控制信道而言,容量提升不是主要需求,多天线技术主要用来进一步优化性能和覆盖,因此只需要考虑发射分集方式。经过评估,对采用码分的上行控制信道(PUCCH)格式1/1a/1b采用了SORTD(Spatial Orthogonal Resource Transmit Diversity)的发射分集方式,即在多天线上采用互相正交的码序列对信号进行调制传输。上行控制信道格式2的分集方式还在讨论中。
对上行业务信道而言,容量提升是主要需求,多天线技术需要考虑空间复用的引入。同时,由于发射分集相对于更为简单的开环秩1预编码并没有性能优势,因此标准最终确定上行业务信道不采用发射分集,对小区边界的用户等可以直接采用开环秩1预编码。目前,2发射天线和4发射天线下的低峰均比秩1~4的码本设计都已完成。
与LTE一样,LTE-A的上行参考信号(Reference Signal,RS)也包括用于信道测量的SRS(Sounding RS)和用于信号检测DMRS(Demodulation RS)。由于上行空间复用及多载波的采纳,单个用户使用的上行DMRS的资源开销需要扩充,最直接的方式就是在LTE 上行RS使用的CAZAC(Const Amplitude Zero Auto-Corelation)码循环移位(Cyclic Shift)的基础上,不同数据传输层的DMRS使用不同的循环移位。还有一种可能是在时域的多个RS符号上叠加正交码(Orthogonal Cover Code,OCC)来扩充码复用空间。目前,关于两种扩充方式的讨论还在继续。对于SRS信号,为了支持上行多天线信道测量以及多载波测量,资源开销相对于R8 SRS信号同样需要扩充,除了延用R8周期性SRS发送模式以外,LTEA还增加了非周期SRS发送模式,由NodeB触发UE发送,实现SRS资源的扩充。
(2)下行多天线增强
因为支持的传输层数的增加,导致需要考虑更大尺寸的码本设计。因为LTE-A下行业务信道的传输可以采用专用参考信号(dedicated RS),因此原则上下行发送可以基于码本也可以基于非码本。同时,对于闭环MIMO,为了减少反馈开销,采用基于码本的PMI反馈方式。目前8天线码本的设计正在进行,初步采用双预编码矩阵码本(Dual-index Precoding Codebook)结构,即把码本矩阵用两个矩阵的乘积表示,通常两个矩阵中一个是基码本,另一个是根据信道变化特征在基码本上的修正。为了进一步减少反馈开销,还可以考虑根据信道的变化快慢不同的统计特征分别进行长周期反馈(比如空间相关性)和短周期反馈(比如快衰因素)。
LTE-A采用用户专用参考信号的方式来进行业务信道的传输,同一用户业务信道的不同层使用的参考信号以CDM+FDM的方式相互正交。
为了测量最多八层信道,除了原来的公共参考信号(Common RS)外,还引入了信道状态指示参考信号(Channel State Indication RS,CSI-RS),CSI-RS在时频域可以设置得比较稀疏,各天线端口的CSI-RS以CDM+FDM的方式相互正交。
另外,LTE-A中目前正在讨论对MU-MIMO的继续增强,以充分开发多用户分集增益和联合信号处理的增益来减少多用户流间的干扰,同时也做到性能和复杂度之间的较好折中。
根据目前标准上达成的结论,MU-MIMO支持最多4个用户复用,每用户不超过两层,总共不超过4层传输。为了增加调度灵活性,MU-MIMO调度对用户而言是透明的,即用户可以不知道是否有其它用户与其在相同的资源上进行空间复用,并且用户可以在SU-MIMO和MU-MIMO状态之间动态进行转换。
5、协作多点传输(Coordinated Multiple Point Transmission and Reception,CoMP)
协作多点传输是一种提升小区边界容量和小区平均吞吐量的有效途径。
其核心想法是当终端位于小区边界区域时,它能同时接收到来自多个小区的信号,同时它自己的传输也能被多个小区同时接收。在下行,如果对来自多个小区的发射信号进行协调以规避彼此间的干扰,能大大提升下行性能。在上行,信号可以同时由多个小区联合接收并进行信号合并,同时多小区也可以通过协调调度来抑制小区间干扰,从而达到提升接收信号信噪比的效果。
按照进行协调的节点之间的关系,CoMP可以分为intra-site CoMP和inter-site CoMP两种。
(1)Intra-site CoMP协作发生在一个站点(site,eNodeB)内,此时因为没有回传(Backhaul)容量的限制,可以在同一个站点的多个小区(cell)间交互大量的信息。