中科院微电子所刘新宇:化合物半导体电子器件研究与进展

2012-12-05 来源:中国半导体行业协会 字号:

我国GaN功率器件和电路的研究起步较早,材料和器件的研究取得了突破性进展:3英寸半绝缘4H-SiC单晶电阻率大于108·cm,微管缺陷密度低于30个/cm2,并实现了小批量供货;SiC衬底HEMT结构材料的室温方块电阻小于270?/?,室温2DEG迁移率和面密度乘积达到2.4x1016/Vs,蓝宝石衬底HEMT结构材料的室温2DEG迁移率大于2180cm2/V.s,室温2DEG浓度与迁移率的乘积大于2.3?1016/V.s,室温方块电阻小于280?/?,达到国际先进水平。在器件和电路方面,国内建立了四条GaN功率器件研制线,研制出覆盖C-Ka波段系列内匹配器件和电路。X波段和Ka波段器件输出功率密度分别达17W/mm和3W/mm以上;8-12GHzGaNMMIC脉冲输出功率20W,功率附加效率为32%;15-17GHzGaNMMIC脉冲输出功率17W,功率附加效率为27%;Ku波段内匹配器件脉冲输出功率20W,功率附加效率大于25%;Ka波段MMIC脉冲输出功率达到3W,W波段器件fT大于174GHz、fmax为215GHz。上述器件和电路的技术指标达到国际先进水平,但在可靠性方面尚存在一定的差距,目前处于样品阶段。2011年,我国重大专项启动“中国宽禁带半导体推进技术”,重点开展3英寸GaN器件工艺线建设和器件可靠性推进工程,最终实现“用的上、用的起”GaN功率器件和电路,实现与国际的同步发展和竞争。

4.SiC材料和器件发展现状

二十一世纪初,美国国防先进研究计划局(DARPA)启动宽禁带半导体技术计划(WBGSTI),极大推动了宽禁带半导体技术的发展。

在SiC单晶材料方面,主流的SiC晶片是3-4英寸,6英寸SiC晶片将很快进入市场。美国Cree公司作为全球SiC晶片行业的先行者,在2007年就可提供商用无微管缺陷的100mm(4英寸)SiC衬底片;2010年8月展示了其新成果,150mm(6英寸)的SiC衬底片,每平方厘米微管密度小于10个。美国DowCorning公司、II-V公司,日本新日铁和已被日本罗姆公司收购的德国SiCystal公司等都可提供直径4英寸的SiC衬底片。日本新日铁计划2011年内向客户提供6英寸SiC晶片样品,预计2015年前后量产。

在SiC功率器件方面,基于4HSiC材料的肖特基二极管(SBD)系列、JFET,以及MOSFETs晶体管已经实现量产,代表的公司主要有美国的Cree、SemiSouth、GE,德国的英飞凌、SiCED,日本的ROHM、三菱、日立、电装(DENSO)等公司。目前,商业化的SiC二极管主要是SBD,已经系列产品化,阻断电压范围600V~1700V,电流1A~50A。主要生产厂商有:美国Cree(最大额定电流50A,反向阻断电压1700V)、美国SemiSouth(最大额定电流30A,反向阻断电压1200V)、和德国Infineon(最大额定电流15A,反向阻断电压1200V),以及日本Rohm(最大额定电流10A,反向阻断电压600V)等公司。商业化的SiC晶体管包括SemiSouth公司推出的SiCJFET(阻断电压为1200V和1700V,电流为3A~30A)以及TranSiC公司推出的BJT器件(阻断电压为1200V和1700V,电流从6A~20A)。另外,美国Cree公司、日本Rohm公司已经可以量产600~1200VSiCDMOS,并开始提供功率模块样品。

SiC肖特基二极管的应用可大幅降低开关损耗并提高开关频率,广泛用于如空调、数码产品DC、DV、MP4、PC、工业控制服务器等领域。在航空航天等高新技术产业,SiC器件的应用能够有效减小系统的体积,同时具有优异的抗辐射性能。SiC电力电子器件市场从2010年开始扩展,可望出现60~70%以上的年增长率,并在2015年达到8亿美元的市场规模。其中,占主要市场份额的SiC电力电子器件形式和应用领域依次为混合动力车专用MOSFET、SBD器件和功率因数校正电路用SBD器件。

宽禁带半导体SiC材料除了用于制作高频和功率器件外,满足军事、航天应用中高温、高腐蚀环境需求的功率器件、抗辐照器件、气体传感器、高温传感器等也是SiC器件发展的一个重要领域。

(三)关注化合物半导体的一些难题

在信息社会,人们对信息大容量传输和高速处理、获取的提出越来越高的要求,使得微电子科学与技术面临许多严峻的挑战。如何充分发挥化合物半导体器件在超高频、大功率方面的优势,从而实现微电子器件和集成电路从吉赫兹到太赫兹的跨越,解决信息大容量传输和高速处理、获取的难题,依然存在若干关键问题:

1.化合物半导体材料原子级调控与生长动力学

化合物半导体材料与Si材料最大的区别在于化合物半导体是由二元、三元、四元系材料组成。结构材料是借助先进的MBE和MOCVD设备来实现的,原子级调控是利用不同种类的原子在外延过程中的结合能、迁移率等的不同,借助高温衬底提供的激活能,控制原子占据不同的晶格位置,在表面上迁移并结晶的动力学过程,使外延材料呈现出多样的晶体结构和物理特性,如不同原子层形成异质结构产生量子限制效应、不同大小原子构成应变材料产生应变效应和局域化效应以及同种原子占据不同的晶格位置产生不同的掺杂类型等。利用原子级调控实现材料的量子限制效应、极化效应、应变效应、局域化效应和掺杂效应完成能带剪裁和材料结构设计。如在传统AlGaN/GaNHEMT材料异质结界面插入2~3个原子层厚的AlN,可以改变材料的能带结构,更好地限制二维电子气,并显著降低对载流子的合金散射,提高材料中二维电子气的输运特性,能够实现对新材料、新结构设计的理论指导。因此,通过对化合物半导体原子级调控和生长动力学的研究是实现低缺陷、高性能化合物材料的关键问题。

通过深入研究化合物半导体材料原子的排列导致能带结构的变化,利用量子效应、极化效应、应变效应、能带工程设计化合物半导体的材料结构,减小载流子的有效质量,为实现超高频、太赫兹和毫米波大功率器件的材料结构设计提供理论指导;深入开展材料结构与器件宏观性能的关联性研究,通过材料结构设计提高二维电子气浓度和迁移率、减少导带尖峰、抑制电流崩塌和短沟效应,提高器件的性能;深入研究化合物半导体表面再构形成的机理,考虑半导体的表面能带弯曲对生长过程中原子的运动、结合机制影响,建立包含固相、气相和表面相的热力学模型,形成完善生长理论,解决同质和异质界面生长的动力学问题;深入研究应力场中原子运动和结合机制,掌握缺陷的形成、增殖和运动机制,解决大失配异质结构的生长、以及应力场中的高掺杂问题。

2.大尺寸、大失配硅基化合物半导体材料生长

硅基上实现高性能的化合物半导体材料一直是研究人员和工业界追求的目标,一方面,该技术可以大大降低化合物器件的成本,另一方面,可以充分利用硅基材料与化合物材料的结合实现多功能器件和电路的融合,如光电一体、高压低压一体、数字微波融合等等,将未来系统设计带来巨大的变革。因此,大尺寸、大失配硅基化合物半导体材料生长是未来化合物半导体跨越式发展的关键。但实现大尺寸、大失配硅基化合物半导体材料生长面临着诸多挑战和问题:一是大失配问题,硅衬底与III-V族半导体材料之间存在三种主要“失配”,即晶格常数失配、热膨胀系数失配、晶体结构失配。晶格常数失配在异质外延过程中将引入大量的位错与缺陷;热膨胀系数差异将导致热失配,在高温生长后的降温过程中产生热应力,从而使外延层的缺陷密度增加甚至产生裂纹;晶体结构失配往往导致反向畴问题。二是极性问题,由于Si原子间形成的健是纯共价键属非极性半导体,而III-V族半导体材料(如GaN)原子间是极性键属极性半导体。对于极性/非极性异质结界面有许多物理性质不同于传统异质结器件,所以界面原子、电子结构、晶格失配、界面电荷和偶极矩、带阶、输运特性等都会有很大的不同,这也是研究Si衬底III-V材料和器件所必须认识到的问题;三是硅衬底上Si原子的扩散,在高温生长过程中Si原子的扩散加剧,导致外延层中会含有一定量的Si原子,这些Si原子易于与生长气氛中的氨气发生反应,而在衬底表面形成非晶态SixNy薄膜,降低外延层的晶体质量。

通过研究大失配材料体系外延生长过程中位错与缺陷的形成机理与行为规律,探索外延材料质量与生长动力学之间的内在联系,研究衬底与外延层之间的介质层对初始成核的影响,解决Si与III-V族材料晶体结构不同导致的反向筹的问题,优化缓冲层技术与柔性衬底技术的结构设计、材料组分、生长条件、生长模式,降低外延层中的位错和缺陷密度,采用应力补偿与低温外延技术等方式抑制裂纹的形成与扩展,借助中断生长技术、MEE技术实现对界面的控制,从而获得低缺陷密度、高迁移率、稳定可靠的硅衬底上III-V族半导体材料。

3.超高频、超强场、纳米尺度下载流子输运机理与行为规律

化合物半导体器件由于材料自身特性,如电子迁移率高、二维电子气浓度高、击穿场强高、饱和漂移速度大等特点,非常适合于超高频、大功率器件和电路的研究,特别是在利用化合物半导体实现超高频CMOS器件、InP基实现太赫兹器件、GaN基实现毫米波大功率等方面极具潜力。但随着器件频率从吉赫兹跨越到太赫兹,器件特征尺寸(FET器件沟道尺寸、HBT器件纵向结构尺寸)缩小到纳米尺度后,器件短沟效应、量子效应、强场效应的影响日趋严重,严重地制约器件性能的提高,如在HEMT器件中,沟道中的电场不断增加,强场下器件短沟效应、量子隧穿效应恶化器件性能,而载流子微观统计引起的涨落等量子效应现象对器件性能的影响有待于进一步深入研究;在HBT器件中,随电流密度的提高,可动载流子会对集电极的电场产生屏蔽作用,使载流子的运动速度降低,使高频特性在高电流下退化;这些宏观特性与化合物半导体器件在超高频、超强场、纳米尺度下载流子输运机理与行为规律密切相关。因此,充分理解和挖掘器件在超高频、超强场、纳米尺度下载流子输运机理与行为规律是实现新原理、高性能化合物器件的关键问题。